Periodic solutions of quaternionic-valued ordinary differential equations

نویسندگان

  • Jean Mawhin
  • J. Mawhin
چکیده

This paper uses topological degree methods to prove the existence of periodic solutions of some quaternionic-valued ordinary differential equations. Mathematics Subject Classification (2000). 34C25, 11R52

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON THE EXISTENCE OF PERIODIC SOLUTIONS FOR CERTAIN NON-LINEAR DIFFERENTIAL EQUATIONS

Here we consider some non-autonomous ordinary differential equations of order n and present some results and theorems on the existence of periodic solutions for them, which are sufficient conditions, section 1. Also we include generalizations of these results to vector differential equations and examinations of some practical examples by numerical simulation, section 2. For some special cases t...

متن کامل

On the reduction of the multidimensional Schrödinger equation to a first order equation and its relation to the pseudoanalytic function theory

Given a particular solution of a one-dimensional stationary Schrödinger equation this equation of second order can be reduced to a first order linear ordinary differential equation. This is done with the aid of an auxiliary Riccati differential equation. In the present work we show that the same fact is true in a multidimensional situation also. For simplicity we consider the case of two or thr...

متن کامل

Octonionic Yang-Mills Instanton on Quaternionic Line Bundle of Spin(7) Holonomy

The total space of the spinor bundle on the four dimensional sphere S4 is a quaternionic line bundle that admits a metric of Spin(7) holonomy. We consider octonionic Yang-Mills instanton on this eight dimensional gravitational instanton. This is a higher dimensional generalization of (anti-)self-dual instanton on the Eguchi-Hanson space. We propose an ansatz for Spin(7) Yang-Mills field and der...

متن کامل

The extended homogeneous balance method and exact solutions of the Maccari system

The extended homogeneous balance method is used to construct exact traveling wave solutions of the Maccari system, in which the homogeneous balance method is applied to solve the Riccati equation and the reduced nonlinear ordinary differential equation. Many exact traveling wave solutions of the Maccari system equation are successfully obtained.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005